Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.545
Filtrar
1.
Sci Rep ; 14(1): 8729, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622264

RESUMO

Pirfenidone (PFD), one acceptable medication for treating idiopathic pulmonary fibrosis (IPF), is not well tolerated by patients at full doses. Hence, employing of some approaches such as combination therapy may be applicable for increasing therapeutic efficacy of PFD. Losartan (LOS), an angiotensin II receptor antagonist, could be a suitable candidate for combination therapy because of its stabilizing effect on the pulmonary function of IPF patients. Therefore, this study aimed to investigate the effects of LOS in combination with PFD on bleomycin (BLM)-induced lung fibrosis in rats. BLM-exposed rats were treated with LOS alone or in combination with PFD. The edema, pathological changes, level of transforming growth factor-ß (TGF-ß1), collagen content, and oxidative stress parameters were assessed in the lung tissues. Following BLM exposure, the inflammatory response, collagen levels, and antioxidant markers in rat lung tissues were significantly improved by PFD, and these effects were improved by combination with LOS. The findings of this in vivo study suggest that the combined administration of PFD and LOS may provide more potent protection against IPF than single therapy through boosting its anti-inflammatory, anti-fibrotic, and anti-oxidant effects. These results hold promise in developing a more effective therapeutic strategy for treating of lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Losartan , Piridonas , Humanos , Ratos , Animais , Losartan/farmacologia , Losartan/uso terapêutico , Bleomicina/toxicidade , Pulmão/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Antioxidantes/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Colágeno/farmacologia
2.
Cells ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38534359

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease characterized by the relentless deposition of extracellular matrix (ECM), causing lung distortions and dysfunction. Animal models of human IPF can provide great insight into the mechanistic pathways underlying disease progression and a means for evaluating novel therapeutic approaches. In this study, we describe the effect of bleomycin concentration on disease progression in the classical rat bleomycin model. In a dose-response study (1.5, 2, 2.5 U/kg i.t), we characterized lung fibrosis at day 14 after bleomycin challenge using endpoints including clinical signs, inflammatory cell infiltration, collagen content, and bronchoalveolar lavage fluid-soluble profibrotic mediators. Furthermore, we investigated fibrotic disease progression after 2 U/kg i.t. bleomycin administration at days 3, 7, and 14 by quantifying the expression of clinically relevant signaling molecules and pathways, epithelial mesenchymal transition (EMT) biomarkers, ECM components, and histopathology of the lung. A single bleomycin challenge resulted in a progressive fibrotic response in rat lung tissue over 14 days based on lung collagen content, histopathological changes, and modified Ashcroft score. The early fibrogenesis phase (days 3 to 7) is associated with an increase in profibrotic mediators including TGFß1, IL6, TNFα, IL1ß, CINC1, WISP1, VEGF, and TIMP1. In the mid and late fibrotic stages, the TGFß/Smad and PDGF/AKT signaling pathways are involved, and clinically relevant proteins targeting galectin-3, LPA1, transglutaminase-2, and lysyl oxidase 2 are upregulated on days 7 and 14. Between days 7 and 14, the expressions of vimentin and α-SMA proteins increase, which is a sign of EMT activation. We confirmed ECM formation by increased expressions of procollagen-1Aα, procollagen-3Aα, fibronectin, and CTGF in the lung on days 7 and 14. Our data provide insights on a complex network of several soluble mediators, clinically relevant signaling pathways, and target proteins that contribute to drive the progressive fibrotic phenotype from the early to late phase (active) in the rat bleomycin model. The framework of endpoints of our study highlights the translational value for pharmacological interventions and mechanistic studies using this model.


Assuntos
Fibrose Pulmonar Idiopática , Pró-Colágeno , Ratos , Humanos , Animais , Fibrose Pulmonar Idiopática/patologia , Fibrose , Colágeno/metabolismo , Bleomicina , Progressão da Doença
4.
Acta Biomater ; 177: 118-131, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350556

RESUMO

Idiopathic pulmonary fibrosis (IPF), for which effective treatments are limited, results in excessive and disorganized deposition of aberrant extracellular matrix (ECM). An altered ECM microenvironment is postulated to contribute to disease progression through inducing profibrotic behavior of lung fibroblasts, the main producers and regulators of ECM. Here, we examined this hypothesis in a 3D in vitro model system by growing primary human lung fibroblasts in ECM-derived hydrogels from non-fibrotic (control) or IPF lung tissue. Using this model, we compared how control and IPF lung-derived fibroblasts responded in control and fibrotic microenvironments in a combinatorial manner. Culture of fibroblasts in fibrotic hydrogels did not alter in the overall amount of collagen or glycosaminoglycans but did cause a drastic change in fiber organization compared to culture in control hydrogels. High-density collagen percentage was increased by control fibroblasts in IPF hydrogels at day 7, but decreased at day 14. In contrast, IPF fibroblasts only decreased the high-density collagen percentage at day 14, which was accompanied by enhanced fiber alignment in IPF hydrogels. Similarly, stiffness of fibrotic hydrogels was increased only by control fibroblasts by day 14 while those of control hydrogels were not altered by fibroblasts. These data highlight how the ECM-remodeling responses of fibroblasts are influenced by the origin of both the cells and the ECM. Moreover, by showing how the 3D microenvironment plays a crucial role in directing cells, our study paves the way in guiding future investigations examining fibrotic processes with respect to ECM remodeling responses of fibroblasts. STATEMENT OF SIGNIFICANCE: In this study, we investigated the influence of the altered extracellular matrix (ECM) in Idiopathic Pulmonary Fibrosis (IPF), using a 3D in vitro model system composed of ECM-derived hydrogels from both IPF and control lungs, seeded with human IPF and control lung fibroblasts. While our results indicated that fibrotic microenvironment did not change the overall collagen or glycosaminoglycan content, it resulted in a dramatically alteration of fiber organization and mechanical properties. Control fibroblasts responded differently from IPF fibroblasts, highlighting the unique instructive role of the fibrotic ECM and the interplay with fibroblast origin. These results underscore the importance of 3D microenvironments in guiding pro-fibrotic responses, offering potential insights for future IPF therapies as well as other fibrotic diseases and cancer.


Assuntos
Matriz Extracelular , Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Fibrose , Colágeno , Fibroblastos/patologia , Hidrogéis/farmacologia
5.
Gen Physiol Biophys ; 43(1): 49-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38312034

RESUMO

The objective of this article is to describe and classify usual interstitial pneumonia (UIP) changes according to their relevance in the pathology of the idiopathic pulmonary fibrosis (IPF) process. In a cohort of 50 patients (25♀, 25♂) with UIP findings, the percentage ratio between fibrotic and preserved parts of the lungs was quantified. Three quantitative stages of fibrotic involvement of the lung parenchyma and concomitant changes were defined. These are initial (≤20%), advanced (21-40%), and diffuse (≥41%) fibrosis of the lungs. Histologically, temporal heterogeneity is predominant with thickened alveolar septa, interstitial fibrosis, and the presence of fibroblastic foci up to mature diffuse fibrosis with honeycomb changes. The finding is accompanied by variably mature lymphocytic inflammation, presence of macrophages, emphysema, bronchioloectasia of the alveoli, bronchiectasis, bronchial muscle wall hypertrophy, hypertrophy of the vessel walls, alveolar mucosa, focal haemorrhage, and hyalinization of the lungs. Pneumocyte hyperplasia, occasionally atypical in appearance with hobnail changes, as well as squamous metaplasia are observed. In the methodically quantified stages of fibrous involvement, 14 subjects were classified (6♀, 8♂) into the stage of initial fibrosis, 21 subjects (11♀; 10♂) into the stage of advanced fibrosis, and 15 subjects (8♀; 7♂) into the stage of diffuse fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Biópsia , Fibrose , Hipertrofia/patologia
6.
Am J Pathol ; 194(5): 656-672, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325552

RESUMO

Idiopathic pulmonary fibrosis is a progressive interstitial lung disease for which there is no curative therapy available. Repetitive alveolar epithelial injury repair, myofibroblast accumulation, and excessive collagen deposition are key pathologic features of idiopathic pulmonary fibrosis, eventually leading to cellular hypoxia and respiratory failure. The precise mechanism driving this complex maladaptive process remains inadequately understood. WD repeat and suppressor of cytokine signaling box containing 1 (WSB1) is an E3 ubiquitin ligase, the expression of which is associated strongly with hypoxia, and forms a positive feedback loop with hypoxia-inducible factor 1α (HIF-1α) under anoxic condition. This study explored the expression, cellular distribution, and function of WSB1 in bleomycin (BLM)-induced mouse lung injury and fibrosis. WSB1 expression was highly induced by BLM injury and correlated with the progression of lung fibrosis. Significantly, conditional deletion of Wsb1 in adult mice ameliorated BLM-induced pulmonary fibrosis. Phenotypically, Wsb1-deficient mice showed reduced lipofibroblast to myofibroblast transition, but enhanced alveolar type 2 proliferation and differentiation into alveolar type 1 after BLM injury. Proteomic analysis of mouse lung tissues identified caveolin 2 as a potential downstream target of WSB1, contributing to BLM-induced epithelial injury repair and fibrosis. These findings unravel a vital role for WSB1 induction in lung injury repair, thus highlighting it as a potential therapeutic target for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Lesão Pulmonar , Animais , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Miofibroblastos/metabolismo , Lesão Pulmonar/patologia , Proteômica , Pulmão/patologia , Fibrose , Hipóxia/patologia , Fibrose Pulmonar Idiopática/patologia , Bleomicina/toxicidade , Regeneração , Peptídeos e Proteínas de Sinalização Intracelular
7.
Cell Biol Int ; 48(4): 483-495, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238919

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease of unknown pathogenic origin. Endoplasmic reticulum (ER) stress refers to the process by which cells take measures to ER function when the morphology and function of the reticulum are changed. Recent studies have demonstrated that the ER was involved in the evolution and progression of IPF. In this study, we obtained transcriptome data and relevant clinical information from the Gene Expression Omnibus database and conducted bioinformatics analysis. Among the 544 ER stress-related genes (ERSRGs), 78 were identified as differentially expressed genes (DEGs). These DEGs were primarily enriched in response to ER stress, protein binding, and protein processing. Two genes (HTRA2 and KTN1) were included for constructing an accurate molecular signature. The overall survival of patients was remarkably worse in the high-risk group than in the low-risk group. We further analyzed the difference in immune cells between high-risk and low-risk groups. M0 and M2 macrophages were significantly increased in the high-risk group. Our results suggested that ERSRGs might play a critical role in the development of IPF by regulating the immune microenvironment in the lungs, which provide new insights on predicting the prognosis of patients with IPF.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Estresse do Retículo Endoplasmático/genética , Pulmão/patologia , Proteínas de Membrana
8.
Eur Respir Rev ; 33(171)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232990

RESUMO

Lung fibrosis is a complex process, with unknown underlying mechanisms, involving various triggers, diseases and stimuli. Different cell types (epithelial cells, endothelial cells, fibroblasts and macrophages) interact dynamically through multiple signalling pathways, including biochemical/molecular and mechanical signals, such as stiffness, affecting cell function and differentiation. Idiopathic pulmonary fibrosis (IPF) is the most common fibrosing interstitial lung disease (fILD), characterised by a notably high mortality. Unfortunately, effective treatments for advanced fILD, and especially IPF and non-IPF progressive fibrosing phenotype ILD, are still lacking. The development of pharmacological therapies faces challenges due to limited knowledge of fibrosis pathogenesis and the absence of pre-clinical models accurately representing the complex features of the disease. To address these challenges, new model systems have been developed to enhance the translatability of preclinical drug testing and bridge the gap to human clinical trials. The use of two- and three-dimensional in vitro cultures derived from healthy or diseased individuals allows for a better understanding of the underlying mechanisms responsible for lung fibrosis. Additionally, microfluidics systems, which replicate the respiratory system's physiology ex vivo, offer promising opportunities for the development of effective therapies, especially for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Células Endoteliais/patologia , Progressão da Doença , Fibrose Pulmonar Idiopática/patologia , Descoberta de Drogas
9.
Clin Respir J ; 18(1): e13731, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286745

RESUMO

BACKGROUND: The aim of the study is to observe the anti-inflammatory and antioxidative stress effects of metformin on bleomycin (BLM)-induced pulmonary fibrosis in mice. METHODS: Mice with BLM-induced pulmonary fibrosis were treated with pirfenidone, metformin, pirfenidone plus metformin and the NADPH oxidase 4 (NOX4) inhibitor diphenyleneiodonium chloride (DPI). Pathological changes and hydroxyproline (HPO) levels were examined in the lung tissue of mice with pulmonary fibrosis. Superoxide dismutase (SOD) activity and malonaldehyde (MDA) levels in lung tissue were determined. RESULTS: Compared with pirfenidone, pirfenidone plus metformin could reduce alveolar damage and collagen fibre deposition and alleviate BLM-induced pulmonary fibrosis. Lung HPO levels were significantly lower in the PFD + MET group than in the BLM group (p < 0.05). SOD levels in the lungs of mice were increased in the PFD + MET group than in the BLM group (p < 0.05). Metformin and pirfenidone plus metformin can reduce MDA levels (p < 0.05). Pirfenidone plus metformin could reduce HPO levels, increase SOD levels, and reduce MDA levels in the lungs of mice. There was a significant correlation between the HPO level and the Ashcroft score (r = 0.520, p < 0.001). CONCLUSION: Metformin enhanced the antifibrotic effects of pirfenidone on BLM-treated mice. Moreover, these findings provide an experimental basis for examining whether metformin can improve the antifibrotic effects of pirfenidone on patients with idiopathic pulmonary fibrosis (IPF). It has broad therapeutic prospects for patients with IPF.


Assuntos
Fibrose Pulmonar Idiopática , Metformina , Piridonas , Humanos , Camundongos , Animais , Metformina/farmacologia , Metformina/uso terapêutico , Pulmão/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Superóxido Dismutase/farmacologia , Camundongos Endogâmicos C57BL
10.
Immunology ; 171(4): 583-594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38178705

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disorder involving scarring of pulmonary tissue and a subsequent decrease in respiratory capacity, ultimately resulting in death. Tartrate resistant acid phosphatase 5 (ACP5) plays a role in IPF but the exact mechanisms are yet to be elucidated. In this study, we have utilized various perturbations of the bleomycin mouse model of IPF including genetic knockout, RANKL inhibition, and macrophage adoptive transfer to further understand ACP5's role in pulmonary fibrosis. Genetic ablation of Acp5 decreased immune cell recruitment to the lungs and reduced the levels of hydroxyproline (reflecting extracellular matrix-production) as well as histological damage. Additionally, gene expression profiling of murine lung tissue revealed downregulation of genes including Ccl13, Mmp13, and Il-1α that encodes proteins specifically related to immune cell recruitment and macrophage/fibroblast interactions. Furthermore, antibody-based neutralization of RANKL, an important inducer of Acp5 expression, reduced immune cell recruitment but did not decrease fibrotic lung development. Adoptive transfer of Acp5-/- bone marrow-derived monocyte (BMDM) macrophages 7 or 14 days after bleomycin administration resulted in reductions of cytokine production and decreased levels of lung damage, compared to adoptive transfer of WT control macrophages. Taken together, the data presented in this study suggest that macrophage derived ACP5 plays an important role in development of pulmonary fibrosis and could present a tractable target for therapeutic intervention in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Pulmão , Animais , Camundongos , Fosfatase Ácida Resistente a Tartarato/genética , Fosfatase Ácida Resistente a Tartarato/metabolismo , Pulmão/patologia , Macrófagos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose , Bleomicina/metabolismo , Bleomicina/farmacologia
12.
Pathol Res Pract ; 254: 155078, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262268

RESUMO

Differentiating between idiopathic interstitial pneumonia (IIP) and secondary interstitial pneumonia, particularly connective tissue disease-associated interstitial lung disease (CTD-ILD), can be challenging histopathologically, and there may be discrepancies among pathologists. While surgical lung biopsy has traditionally been considered the gold standard for diagnosing interstitial pneumonia, the usefulness of transbronchial lung cryobiopsy (TBLC) has been reported. If TBLC could effectively distinguish between primary and secondary diseases, it would provide a less invasive option for patients. The aim of this study was to identify specific pathologic findings in TBLC specimens that could assist in distinguishing CTD-ILD from IIP. A total of 93 underwent TBLC at Tenri Hospital between 2018 and 2022. We retrospectively reviewed cases of CTD-ILD exhibiting a nonspecific interstitial pneumonia (NSIP) pattern (CTD-NSIP) and cases of NSIP with an unknown etiology (NSIP-UE), as determined through multidisciplinary discussion. Nineteen patients with CTD-NSIP and 26 patients with NSIP-UE were included in the study for clinicopathological analysis. The CTD-NSIP group had a significantly higher proportion of female patients compared to the NSIP-UE group (79% vs. 31%; p = 0.002). The presence of both fresh and old intraluminal fibrosis within the same TBLC specimen was significantly more frequent in CTD-NSIP group than in the NSIP-UE group (p = 0.023). The presence of an NSIP pattern with co-existing fresh and old intraluminal fibrosis in TBLC specimens raised suspicion for CTD-ILD.


Assuntos
Doenças do Tecido Conjuntivo , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Feminino , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/patologia , Estudos Retrospectivos , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/patologia , Pulmão/patologia , Doenças do Tecido Conjuntivo/complicações , Doenças do Tecido Conjuntivo/diagnóstico , Doenças do Tecido Conjuntivo/patologia , Biópsia , Fibrose
13.
J Nutr Biochem ; 125: 109558, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185349

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. Up to now, no treatment can stop the progression of IPF. Vitamin D3 (VD) reduces experimental lung fibrosis in murine models and depletion of vitamin D3 might be associated with the reduced survival of patients with IPF. In this context, we determined if VD can prevent the pro-fibrotic functions of human lung fibroblasts (HLFs) isolated from patients with IPF. IPF and control HLFs were derived from surgical lung biopsies collected from patients with IPF or with primary lung cancer, respectively. VD (3-100 nM) markedly reduced the basal and PDGF-induced proliferation of HLFs. VD also altered cell cycle by increasing the percentage of IPF HLFs arrested in the G0/G1 phase, and by downregulating the expression of various cell cycle regulatory proteins. In addition, VD barely prevented the TGF-ß1-induced differentiation in HLFs. At 100 nM, VD slightly reduced the expression of the pro-fibrotic marker α-smooth muscle actin, and had no effect on fibronectin and collagen-1 expression. In contrast, 100 nM VD strongly inhibited the aerobic glycolytic metabolism induced by TGF- ß1. Finally, VD reduced both the secretion of lactate, the levels of lactate deshydrogenase mRNA and the activity of intracellular LDH in IPF HLFs. In conclusion, our study shows that VD reduced pro-fibrotic functions of HLFs. These findings suggest that it might be interesting to assess the potential clinical benefits of vitamin D supplementation in patients with IPF, especially on lung function decline.


Assuntos
Fibrose Pulmonar Idiopática , Pulmão , Humanos , Animais , Camundongos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibroblastos/metabolismo , Diferenciação Celular , Lactatos/farmacologia
14.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L303-L312, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226605

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an incurable interstitial lung disease characterized by fibrosis. Two FDA-approved drugs, pirfenidone and nintedanib, only modestly prolong survival. In this study, we asked whether levels of select circulating biomarkers in patients with IPF demonstrated changes in response to treatment over time and whether treatment with pirfenidone and nintedanib led to differential biomarker expression. Serial plasma samples from 48 patients with IPF on usual treatment and six healthy volunteers were analyzed to identify differentially expressed blood protein. Hypothesis-driven potential biomarker selection was based on recent literature, internal preclinical data, and the PROLIFIC Consortium (Schafer P. 6th Annual IPF Summit. Boston, MA, 2022) proposed biomarkers of pulmonary fibrosis. We compared our findings to public databases to provide insights into relevant signaling pathways in IPF. Of the 26 proteins measured, we found that 11 (SP-D, TIMP1, MMP7, CYFRA21-1, YKL40, CA125, sICAM, IP-10, MDC, CXCL13) were significantly elevated in patients with IPF compared with healthy volunteers but their levels did not significantly change over time. In the IPF samples, seven proteins were elevated in the treatment group compared with the no-treatment group. However, protein profiles were not distinguishable between patients on pirfenidone versus nintedanib. We demonstrated that most proteins differentially detected in our samples were predicted to be secreted from the lung epithelial or interstitial compartments. However, a significant minority of the proteins are not known to be transcriptionally expressed by lung cells, suggesting an ongoing systemic response. Understanding the contributions of the systemic response in IPF may be important as new therapeutics are developed.NEW & NOTEWORTHY In this study, we confirmed protein expression differences in only a subset of predicted biomarkers from IPF and control subjects. Most differentially expressed proteins were predicted to be secreted from lung cells. However, a significant minority of the proteins are not known to be transcriptionally expressed by lung cells, suggesting an ongoing systemic response. The contributions of the systemic response in IPF may be important as new therapeutics are developed.


Assuntos
Antígenos de Neoplasias , Fibrose Pulmonar Idiopática , Queratina-19 , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Fibrose , Biomarcadores
15.
Sci Rep ; 14(1): 1315, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225283

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by severe lung fibrosis and a poor prognosis. Although the biomolecules related to IPF have been extensively studied, molecular mechanisms of the pathogenesis and their association with serum biomarkers and clinical findings have not been fully elucidated. We constructed a Bayesian network using multimodal data consisting of a proteome dataset from serum extracellular vesicles, laboratory examinations, and clinical findings from 206 patients with IPF and 36 controls. Differential protein expression analysis was also performed by edgeR and incorporated into the constructed network. We have successfully visualized the relationship between biomolecules and clinical findings with this approach. The IPF-specific network included modules associated with TGF-ß signaling (TGFB1 and LRC32), fibrosis-related (A2MG and PZP), myofibroblast and inflammation (LRP1 and ITIH4), complement-related (SAA1 and SAA2), as well as serum markers, and clinical symptoms (KL-6, SP-D and fine crackles). Notably, it identified SAA2 associated with lymphocyte counts and PSPB connected with the serum markers KL-6 and SP-D, along with fine crackles as clinical manifestations. These results contribute to the elucidation of the pathogenesis of IPF and potential therapeutic targets.


Assuntos
Fibrose Pulmonar Idiopática , Proteoma , Humanos , Proteína D Associada a Surfactante Pulmonar , Teorema de Bayes , Sons Respiratórios , Fibrose Pulmonar Idiopática/patologia , Biomarcadores
16.
Int Immunopharmacol ; 126: 111316, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056200

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a serious, lifelong lung disease with high morbidity and high mortality. Menstrual blood-derived stem cells (MenSCs) derived exosomes (MenSCs-Exo) emerge as an attractive tool for the treatment of acute lung injury and fibrosis-related diseases. However, more comprehensive mechanism over how MenSCs derived exosomes exhibits anti-pulmonary fibrosis needs to be elucidated. In this study, TGF-ß was used to construct cell fibrosis model, and bleomycin (BLM) was applied to induce lung tissue fibrosis mice model. BLM- and TGF-ß1-induced cellular reactive oxygen species (ROS), mitochondrial DNA (mtDNA) damage, and lung epithelial cell apoptosis were alleviated by MenSCs-Exo treatment in vivo and in vitro. Besides, it was found that MenSCs-Exo delivered miR-let-7 into MLE-12 cells/lung epithelial cell and the reduction of miR-let-7 blocked the improvement produced by MenSCs-Exo. Mechanistically, miR-let-7 directly bound to Sp3 and negatively regulated its expression. Sp3 elevation promoted the expression of ferroptosis-related protein and mitochondrial DNA (mtDNA) damage markers via recruiting HDAC2, thereby inactivating keap1/Nrf2 signal cascade, which were confirmed in BLM-induced pulmonary fibrosis mice model under the combination therapy of the MenSCs-Exo and let-7 inhibitor. Collectively, MenSCs derived exosomes could transmit miR-let-7 into MLE-12 cells to inhibit the expression of Sp3, thereby weakening the recruitment effect of Sp3 on HDAC2, lifting the deacetylation restriction of HDAC2 on Nrf2, and enhancing the Nrf2 pathway. These changes further declined ferroptosis and delayed the pathological process of oxidative damage and lung epithelial cell apoptosis in PF.


Assuntos
Ferroptose , Fibrose Pulmonar Idiopática , MicroRNAs , Camundongos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose Pulmonar Idiopática/patologia , Transdução de Sinais , Bleomicina/efeitos adversos , DNA Mitocondrial/metabolismo , Células-Tronco/metabolismo
17.
J Mol Histol ; 55(1): 1-13, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37878112

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic lung disease characterized by abnormal proliferation and activation of fibroblasts, excessive accumulation of extracellular matrix (ECM), inflammatory damage, and disrupted alveolar structure. Despite its increasing morbidity and mortality rates, effective clinical treatments for IPF remain elusive. Osteopontin (OPN), a multifunctional ECM protein found in various tissues, has been implicated in numerous biological processes such as bone remodeling, innate immunity, acute and chronic inflammation, and cancer. Recent studies have highlighted the pivotal role of OPN in the pathogenesis of IPF. This review aims to delve into the involvement of OPN in the inflammatory response, ECM deposition, and epithelial-mesenchymal transition (EMT) during IPF, and intends to lay a solid theoretical groundwork for the development of therapeutic strategies for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Osteopontina , Humanos , Osteopontina/metabolismo , Fibrose Pulmonar Idiopática/etiologia , Fibrose Pulmonar Idiopática/patologia , Inflamação/patologia , Matriz Extracelular/metabolismo , Fibroblastos/patologia , Pulmão/patologia , Transição Epitelial-Mesenquimal , Fibrose
18.
Arch Pathol Lab Med ; 148(2): 168-177, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37226833

RESUMO

CONTEXT.­: The pathologic diagnosis of usual interstitial pneumonia (UIP) remains a challenging area, and application of histologic UIP guidelines has proved difficult. OBJECTIVE.­: To understand current practice approaches by pulmonary pathologists for the histologic diagnosis of UIP and other fibrotic interstitial lung diseases (ILDs). DESIGN.­: The Pulmonary Pathology Society (PPS) ILD Working Group developed and sent a 5-part survey on fibrotic ILD electronically to the PPS membership. RESULTS.­: One hundred sixty-one completed surveys were analyzed. Of the respondents, 89% reported using published histologic features in clinical guidelines for idiopathic pulmonary fibrosis (IPF) in their pathologic diagnosis; however, there was variability in reporting terminology, quantity and quality of histologic features, and the use of guideline categorization. Respondents were very likely to have access to pulmonary pathology colleagues (79%), pulmonologists (98%), and radiologists (94%) to discuss cases. Half of respondents reported they may alter their pathologic diagnosis based on additional clinical and radiologic history if it is pertinent. Airway-centered fibrosis, granulomas, and types of inflammatory infiltrates were considered important, but there was poor agreement on how these features are defined. CONCLUSIONS.­: There is significant consensus among the PPS membership on the importance of histologic guidelines/features of UIP. There are unmet needs for (1) consensus and standardization of diagnostic terminology and incorporation of recommended histopathologic categories from the clinical IPF guidelines into pathology reports, (2) agreement on how to incorporate into the report relevant clinical and radiographic information, and (3) defining the quantity and quality of features needed to suggest alternative diagnoses.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Consenso , Tomografia Computadorizada por Raios X/métodos , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/patologia , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/patologia , Pulmão/diagnóstico por imagem , Pulmão/patologia , Fibrose
19.
J Biol Chem ; 300(1): 105530, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072048

RESUMO

Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.


Assuntos
Fibrose Pulmonar Idiopática , Mecanotransdução Celular , Miofibroblastos , Proteína A4 de Ligação a Cálcio da Família S100 , Animais , Camundongos , Transdiferenciação Celular , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo
20.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L111-L123, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084409

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-ß (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes the transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel anoctamin-1 (ANO1) in human lung fibroblasts (HLFs) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle α-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1, and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate profibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLFs results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that 1) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and 2) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein but independent of WNK1 kinase activity.NEW & NOTEWORTHY This study describes a novel mechanism of differentiation of human lung fibroblasts (HLFs) to myofibroblasts: the key process in the pathogenesis of pulmonary fibrosis. Transforming growth factor-ß (TGF-ß) drives the expression of calcium-activated chloride channel anoctmin-1 (ANO1) leading to an increase in intracellular levels of chloride. The latter recruits chloride-sensitive with-no-lysine (K) kinase (WNK1) to activate profibrotic RhoA and AKT signaling pathways, possibly through activation of mammalian target of rapamycin complex-2 (mTORC2), altogether promoting myofibroblast differentiation.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Humanos , Anoctamina-1/metabolismo , Diferenciação Celular , Cloretos/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Miofibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...